디시인사이드 갤러리

갤러리 이슈박스, 최근방문 갤러리

갤러리 본문 영역

벤 톰슨 stratechery DeepSeek 분석

KurisuMakise갤로그로 이동합니다. 2025.01.28 21:00:02
조회 18640 추천 104 댓글 103

7bee8823e78060f26fe782e34784743c1b6cab5f313d828c578d51b936eaa33c3ff78a326e0f7e3b80fafba0304a5a2e7d131a14ad6cf127beb1361b88fd905efc0b19637ef3276866d73905a64b



사건의 발단은 워싱턴이 2023년 중국이 7나노를 만들어내는 것을 보고 과하게 경기를 일으킨 것부터 시작된다. 


2023년 9월 화웨이가 SMIC를 통해 만든 7나노가 탑재된 Mate 60 Pro를 발표했을 때, 그 칩을 자세히 들여다보면 놀라운 일은 아니었는데 말이다.


이미 그로부터 1년 전, SMIC는 7나노를 만들었었고 타사들도 다 만들 수 있음에도 수율이 안나와서 안만들었을 뿐인 사건인데 말이다. 


오히려 놀라웠던건 워싱턴 DC의 반응이었고 그때부터 미국은 칩 판매를 허가기반으로 바꿔버린 것이다. 


DeepSeek 사건도 이때와 비슷하게 흘러가고 있다.


사실 이번 훈련비용 절감 관련한 사실은 R1 모델이 아니라 지난 크리스마스에 공개된 V3 논문에서 드러났었다.



3beec027f5d72ae87eb1d19528d527031d082cf875c38f


https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf



그들은 V3모델 이전의 V2에서 DeepSeekMoE, DeepSeekMLA를 소개했었는데, 이 성과가 V3에서부터 나기 시작했다.


우선 DeepSeekMoE는 MoE, Mixture of Experts 전문가 혼합이라는 뜻인데 GPT-3.5 같은 모델은 훈련시든 추론시든 어떤 토큰이 모델로 들어오면 전체를 활성화시키는데 반해, MoE는 특정 주제에 맞는 전문가만 활성화시킨다. 


(**물론 이것이 잘 발동하려면 게이트가 토큰의 종류를 적절히 판별해 알맞는 전문가에 보내도록 해야한다. 사전학습시 Dense 모델처럼 토큰마다 모든 GPU를 사용하지 않으니 Sparse할 것이고 연산량과 GPU타임이 줄 수 밖에 없다. 하지만 최근 트렌드는 거의 모든 훈련모델들이 MoE를 사용하고 있기 때문에 이것 때문에 효율성이 특출나졌다는 것은 불가능한 이야기다.)


이어서 DeepSeekMLA는 추론에서의 제한사항을 혁신해주었다. 어마어마한 양의 메모리 사용량을 줄여준 것이다. 기존에는 모델 전체를 메모리에 로드하고 긴 컨텍스트 윈도우의 토큰 모두를 Key, Value 값으로 저장해야했는데 이런식은 Key-Value 값이 기하급수적으로 늘어서 비용이 늘 수 밖에 없는 것이다. 메모리 부담도 매우 커지고. 하지만 MLA, Multi-head latent attention을 통해 key-value 저장을 압축시켜서 추론시 필요한 메모리를 크게 줄였다.


여기에 V3에서 통신오버헤드를 줄이는 로드 밸런싱 방식과 훈련단계에서 여러 토큰을 동시에 예측하도록(multi-token prediction)하는 기법이 추가된 것이다. 


그 결과 훈련 효율이 크게 향상되어 H800 GPU 타임이 2,788K로 전체 비용이 557.6만 달러가 나온 것이다. (**라마 훈련비용에 비해 3%)


Q: 그건 아무리 봐도 너무 낮은 것 아닌가?  


A: 최종 훈련단계에서의 비용만 계산한 것이다. 그외 모든 비용은 제외시킨 것이다. V3 논문 자체에도 이런 표현이 명시되어 있다.



3bee8077abc236a14e81d2b628f17764976d5643


- 모델구조, 알고리즘, 데이터, 사전 연구, 비교실험 등에 사용된 비용은 포함하지 않았다.


즉, 이번 DeepSeek 사건을 재현하려면 3%보다 훨씬 더 큰 돈이 든다는 말이다. 하지만 "최종 훈련" 자체만 보면 그 비용은 말이 된다.


Q: 알렉산드르 왕이 한 H100 5만개 이야기는 뭔가?


A: 아마 그는 Dylan Patel이 2024년 11월에 한 트윗을 본 것이 아닐까 추측한다. 당시 파텔은 DeepSeek이 호퍼 5만개분을 가지고 있을 것이라는 분석을 내놓았다. 사실 H800은 H100에서 메모리 대역폭을 크게 줄인 버전이다. 


중요한 점은 DeepSeek은 그 GPU간의 통신에서 제한이 걸렸기 때문에 이런 연구를 시작했고 거기서 성과를 냈다는 것이다. H800 각 칩에서 132개 프로세싱 유닛 중 20개를 통신 전담으로 할당했다는 것은 쿠다로는 불가능하다. PTX라는 저수준 GPU 명령어집합까지 내려가야만 가능한 일이다. 이정도로 미친수준의 최적화까지 집착했다는 것은 오히려 H100이 아니라 H800에서 훈련을 해내겠다는 집념을 보인 셈이다. 


또 지금처럼 추론 서비스를 실제 제공하고 있으려면 상당량의 GPU가 확보되어야만 가능한 일이다. 어마어마한 양의 GPU가 필요하다.



0ab4e411c1811a9e4f9ef79a06c117739fae680874bb69dac7c263ead7abd3


(**아마 호퍼 5만개 이상은 확보했을 것이라는 추측이며 최근 일론 머스크도 여기에 동의했다.)


Q: 그럼 칩 규제 위반 아닌가?


A: 아니다. H100은 막았어도 H800은 막지 않았기 때문이다. 다들 프론티어 모델을 개발하려면 칩간 대역폭이 중요할 것이라 추측했는데 DeepSeek은 그 한계를 극복하도록 모델 구조와 인프라를 최적화시킨 셈이다. 만약 H100 수출규제가 없었다면 더 쉽게 클러스터를 구축하고 모델을 만들어냈을 것이다.


Q: 그럼 V3가 (base에서의) 프론티어 모델이란 말인가?


A: 적어도 4o, Sonnet-3.5 와 비빌 수준임은 확실해보이고 라마보다는 훨씬 더 위다. 


다만 DeepSeek은 4o, 소넷을 디스틸(distill)해서 훈련용 토큰을 만들어냈을 확률이 아주 높아보인다.


Q: 디스틸레이션(distillation)이 뭔가?


A: 디스틸레이션은 다른 모델의 이해를 추출하는 방법이다. 선생 모델에서 다양한 입력을 넣고 만들어진 출력으로 학생 모델의 학습에 사용시키는 것이다. 각 연구소들은 이런 디스틸레이션을 명백히 금지하고 있다. 하지만 매우 흔하게, DeepSeek 외에도 수많은 곳에서 다들 하고 있다. 때문에 4o, 소넷급 모델들이 계속해서 나오고 있는 것이다. 솔직히 안했을리가 없다고 생각될 정도로 흔한 방법이다.


Q: 그럼 1등 모델들은 불리한 것 아닌가?


A: 맞다. 앞서가는 연구소들은 가장자리를 넓히는데에 이런 방식은 사용할 수 없다. 대신에 자사 모델 최적화에는 사용할 수 있는 정도다. 부정적인 면은, 이런식으로 디스틸하게 되면 타 연구소들이 계속해서 무임승차하는 것이 가능해진다는 이야기다. 최첨단 모델을 개발하는데 드는 비용은 오직 프론티어 랩들만이 떠안게 된다. 


그 결과, 리딩 엣지(leading edge) 모델들에 어마어마한 돈이 들어서 개발되어도, 금방 디스틸레이션으로 카피해서 들어간 돈이 회수가 어렵게 되는 것이다. 곧바로 상품화되고 흔해지니까 말이다. 


바로 이 점이 마이크로소프트와 OpenAI가 점점 더 결별하는 방향으로 나아가는 이유인 것 같다. 1천억 달러를 들여서 최신 모델을 개발해봐야, 금방 감가상각되어 흔해지면 돈을 회수할 수가 없다.


Q: 이런 이유로 빅테크 주가가 떨어지고 있는 것인가?


A: 장기적으로보면 추론비용이 싸지는 것은 마이크로소프트 같은 기업에 유리하다. 그들은 서비스 제공업자이기 때문이다. 아마존 역시 AWS 때문에 수혜자다.


이번 사건으로 가장 큰 수혜를 보는 곳 중 하나는 애플이다. 메모리 요구량이 급격하게 줄면 애플 실리콘 같은 엣지 디바이스에서 추론이 실현 가능해지기 때문이다. 애플은 CPU, GPU, NPU가 모두 통합된 메모리를 공유한다. 즉, 애플의 고사양 칩이 곧바로 소비자용 추론 칩이 될 수 있다.


엔1비디아의 게이밍 GPU VRAM은 32GB가 최대치지만 애플의 경우 128GB의 램을 사용할 수 있다.


메타도 수혜자다. 그들의 비전에서 가장 큰 걸림돌이 추론 비용이었는데 이게 사전훈련 비용과 마찬가지로 매우 싸진다면 그들의 비전 역시 더욱 실현가능해질 것이다.


다만 구글의 경우는 악재다. 하드웨어 요구량이 줄어들기 때문에 그들의 TPU로 누려왔던 이점이 줄어들고 추론비용이 제로에 가까워질수록 새로운 검색서비스 등이 나타나기 때문이다. 물론 구글도 자체비용을 줄일 순 있겠지만 잃는 것이 더 크다.


Q: 그럼 왜 주가가 떨어지나


A: 내가 말한 건 장기적 비전이고 현재는 R1으로 인한 충격이 수습되기 전이다.


Q: R1은 어떤가


A: R1은 추론형 모델이다. 이는 openai의 o1 신화를 두 가지 면에서 무너뜨린다. 첫째 존재 자체다. 추론에 오픈ai만의 특별한 비법이 없다는 것이다. 둘째, 가중치를 공개해버렸다는 것이다. 물론 데이터는 숨겼기 때문에 오픈소스라 일컫는 것은 무리가 있지만 말이다. 이제 굳이 OpenAI에 돈을 내지 않고도 원하는 서버나 로컬환경에서 추론모델을 돌릴 수 있게 되었다.


사실 deepseek은 이번에 R1과 R1zero를 함께 공개했는데 후자가 더 중요하다고 본다.


R1-zero는 인간의 피드백을 완전히 빼버렸다. 순수 RL(강화학습)이다. 이 모델에 문제를 잔뜩 주고 올바른 답을 내면 보상을 주고, 체계적인 사고과정을 보여주면 또 보상을 주는 방식으로 만들었다. 마치 알파고가 이기면 보상을 주는 보상함수를 만들었더니 모델 스스로 인간이 가르치지 않은 방식대로 서로 학습시킨 것 처럼 말이다.


이를 보면 The bitter Lesson이 다시 한번 입증된 것 같다. 추론하는 방법을 일일히 가르치는 것이 아니라 충분한 연산자원과 데이터만 주면 알아서 학습한다는 것이다. 


Q: 그럼 결국 우린 AGI에 더 가까워진 것인가?


A: 그렇게 보인다. 소프트뱅크의 마사요시가 왜 마이크로소프트가 아닌 OpenAI에 돈을 댄 것인지도 설명이 된다. 1등에 서면 엄청난 수익이 돌아올 것이라는 믿음이 있는 것이다. (** 곧 모델이 알아서 똑똑해지기 시작할 것이기 때문)


Q: 그럼 R1이 선두에 선 것인가?


A: 그렇다고 보긴 어렵다. 여러 정황 상 R1은 o1-pro를 디스틸레이션한 것으로 보인다. OpenAI는 이미 o3를 선보였다. DeepSeek은 확실히 효율성에서 선두를 차지했지만 그게 최고의 모델이라는 의미는 아니다.



0ab4f919e1e01d91619ef79847c02c73a049a3dd8c2b5fa078797d3c1154



(** 뿐만 아니라 o1-mini도 R1 671B 디스틸에 사용된 정황으로 보이는 케이스도 속속 드러났다. https://x.com/JJitsev/status/1883158764863537336)


Q: 그럼 왜 이렇게 다들 호들갑인건가?


A: 세 가지 요인 때문이다. 


1. 중국은 미국보다 많이 뒤쳐져있다 는 인식이 틀렸기 때문에 사람들이 충격받는 것이다. 중국의 소프트웨어 역량은 매우 높은 수준임이 드러났다.


2. V3의 낮은 훈련비용, R1의 낮은 추론 비용 때문이다. 계산상으로는 가능한 수치였기 때문에 NVDA에 대한 우려가 커진 것이다.


3. DeepSeek이 칩 규제라는 벽을 뚫고 이 성과를 이뤄냈기 때문이다. 현재까지는 어쨌든 합법적으로 구한 H800으로 훈련한 것으로 보이긴 하지만 허점이 많다.


Q: 난 NVDA 갖고 있는데 망한건가?


A: NVDA 해자가 2개 있었다.


1. 쿠다

2. 여러 GPU를 하나로 묶어 가상의 거대한 GPU로 만들어내는 기술 - 이 능력은 그 회사만의 독보적인 영역이었다.


이 둘은 서로를 더욱 강화시켜주는 것이었는데 약한 하드웨어와 낮은 대역폭으로도 극단적인 최적화가 가능하다는 것이 증명되었기 때문에 NVDA는 새로운 스토리들이 더 필요하게 되었다.


다만 아직 유리한 점이 3가지 있다.


1. DeepSeek의 접근방식을 오히려 H100이나 GB100 같은 최신식 칩에 사용하게 된다면 얼마나 더 강력해질까? 더 효율적인 컴퓨팅이 가능해진다 하더라도 더 많은 컴퓨팅은 여전히 유효하다.


2. 추론 비용이 낮아지면 -> 오히려 모델 사용량이 더 늘어나는 측면이 있다.



3ebcc43fe49c28a8699fe8b115ef046ffa3a88ffbb


(** 사티아 나델라는 간밤에 제본스의 역설을 언급하며 AI가 점점 더 싸지고 접근가능성이 높아진다면 사용량이 더 크게 오를 것이라고 언질을 주었다.)



27b8c629ebc176b660b8f68b12d21a1dab8d045105c6


(** 제본스의 역설이란 단일 비용이 A에서 B로 싸진다면 사용량이 C에서 D로 늘어나기 때문에 전체 사용량은 오히려 늘어남을 지적하는 것이다.)


3. R1이나 o1같은 추론모델들은 더 많은 컴퓨팅을 사용할수록 더 똑똑해진다. 인공지능의 성능을 높이는 방법이 여전히 컴퓨팅에 달려있다면 여전히 NVDA가 수혜를 볼 가능성이 있다.


하지만 장밋빛 전망만 있는 것은 아니다.


DeepSeek의 효율성과 오픈웨이트로 인한 광범위한 공개는 NVDA의 단기적인 낙관적 성공스토리에 물음표를 달아버렸다.


특히. 추론단계에서는 NVDA 칩 외에도 다른 대안 시나리오가 작동하기 시작했다.


예를 들어 AMD 칩 하나로도 추론이 가능해진다면 칩간 대역폭이 낮다는 AMD 측의 단점을 상쇄할 수 있게 된다.


추론 전용칩이 각광을 받을 수도 있다.


요약하자면 NVDA가 사라지진 않을 것이다. 다만 지금까지 고려되지 않았던 불확실성에 노출되었고 이는 하방압력을 키울 수 밖에 없다.


Q: 칩 규제는 어떻게 되는건가?


A: 칩규제가 더 중요해졌다고 주장할 수도 있겠지만. 2023년의 백악관의 규제가 DeepSeek을 부추긴 것이라고도 볼 수 있기 때문에 단기적으로는 효과가 있더라도 장기적으로는 의문이다.


Q: 그럼 왜 중국은 오픈소스를 하는건가?


A: 중국이 아니라 DeepSeek이 그렇게 하는거다. CEO 량원펑은 오픈소스야말로 인재를 끌어들이는 핵심이라고 언급했다. 


Q: 그럼 OpenAI는 망한건가?


A: 그렇다고 볼 순 없다. 결국은 AI Take-off에 가장 먼저 도달한 자가 승리한다. 반면 이번 주말의 가장 큰 패배자는 앤트로픽이다. DeepSeek이 앱스토어 1위를 차지하기까지 샌프란시스코 지역 외에서 클로드는 주목조차 끌지 못했다. API가 그나마 잘돌아간다고 어필하지만, DeepSeek 같은 방식대로 디스틸로 프론티어모델이 흔하게 퍼져버리면 가장 먼저 무너지는 쪽이 이 API 비즈니스다. 돈주고 API 쓰느니 성능이 비슷하다면 DeepSeek 같은 오픈웨이트 모델을 쓰기 때문이다.


결국 가장 큰 수혜자는 소비자와 기업들이다. 이런 미래는 사실상 무료에 가까운 AI 제품과 서비스를 누릴 수 있게 될 것이기 때문이다. 


중국은 이제 자신감이 점점 더 커질 것이다.


미국은 선택의 기로에 놓여있다. 더 강경하게 나아갈 것인가, 아니면 더 큰 혁신으로 나아갈 것인가. 


연구소들이 이제 로비에 신경쓰지 않고 혁신에만 집중하게된다면, 우린 DeepSeek에게 감사하게 될지도 모른다.



출처: 특이점이 온다 갤러리 [원본 보기]

추천 비추천

104

고정닉 38

10

댓글 영역

전체 댓글 0
등록순정렬 기준선택
본문 보기

하단 갤러리 리스트 영역

왼쪽 컨텐츠 영역

갤러리 리스트 영역

갤러리 리스트
번호 제목 글쓴이 작성일 조회 추천
설문 타고난 드립력으로 사석에서 만나도 웃길 것 같은 스타는? 운영자 25/02/10 - -
공지 실시간베스트 갤러리 이용 안내 [2714/2] 운영자 21.11.18 10376514 512
305606
썸네일
[야갤] 이혼숙려캠프...레전드 부부들 ㄹㅇ...jpg
[363]
Adidas갤로그로 이동합니다. 01:55 32299 345
305604
썸네일
[해갤] OP, 키스방에 2억 쓴 사람
[385]
ㅇㅇ(185.253) 01:45 22071 107
305602
썸네일
[잡갤] 잘생긴 남자가 유리창 너머로 인사를 한다면?
[200]
ㅇㅇ(211.234) 01:35 17329 50
305598
썸네일
[주갤] 남친한테 결혼하자고 했다가 대차게 차여버린 28살 삼전녀 ㅜ ㅜ
[291]
갓럭키갤로그로 이동합니다. 01:15 21455 146
305596
썸네일
[이갤] 미쳐 돌아가고 있는 병무청 근황
[423]
시립갤로그로 이동합니다. 01:05 23119 295
305594
썸네일
[싱갤] 싱글벙글 학폭이 자연의 섭리라는 헬스 유튜버.jpg
[716]
최강한화이글스팬갤로그로 이동합니다. 00:55 33296 296
305592
썸네일
[일갤] 시코쿠) 우동투어 리벤지 2일차
[28]
아시즈리갤로그로 이동합니다. 00:45 5945 22
305590
썸네일
[야갤] 한반도에 퍼지는 스페인 독감을 막기 위해서 포상금 건 일제
[105]
야갤러(223.33) 00:35 10860 11
305588
썸네일
[헤갤] [망한머리 구조대 미용실형] 안 망했는데? 부산사나이 13만원 시스루펌
[92]
미용실형갤로그로 이동합니다. 00:25 11652 57
305586
썸네일
[싱갤] 싱글벙글 스파이더맨 정실...jpg
[210]
ㅇㅇ갤로그로 이동합니다. 00:15 27747 222
305584
썸네일
[M갤] 김하성이 작년 부상때 개빡쳤었던 이유....
[24]
ㅇㅇ갤로그로 이동합니다. 00:05 9547 27
305582
썸네일
[디갤] 펜탁스로 찍은... CCD 42mm 강남
[33]
설치는설치류갤로그로 이동합니다. 02.14 5849 18
305580
썸네일
[싱갤] 오싹오싹 코브라 효과
[157]
안태우갤로그로 이동합니다. 02.14 26991 156
305576
썸네일
[야갤] 북한과 한국에 대해 평가하는 앤드류 테이트...jpg
[267]
앤드류테이트갤로그로 이동합니다. 02.14 16452 191
305574
썸네일
[기갤] 쯔양 '유통기한 미표시' 가공식품 판매·기부...지자체 전량
[300]
긷갤러(223.33) 02.14 22267 171
305572
썸네일
[싱갤] 싱글벙글 동서양 최초의 보디빌더들...jpg
[153]
ㅇㅇ갤로그로 이동합니다. 02.14 16446 90
305570
썸네일
[일갤] 도호쿠 여행 2일차 - 눈과 사과의 나라 아오모리, 히로사키
[20]
39chan갤로그로 이동합니다. 02.14 5327 22
305568
썸네일
[카연] [바람의나라 클래식] 개같은 일본.manhwa
[73]
따따갤로그로 이동합니다. 02.14 9742 95
305566
썸네일
[K갤] 김도영 : 나는 욕심이 많은 선수.jpg
[27]
ㅇㅇ갤로그로 이동합니다. 02.14 9298 92
305564
썸네일
[오갤] 산지직송 홈마카세 11(씹스압) - 2
[23]
금태충갤로그로 이동합니다. 02.14 4933 19
305562
썸네일
[싱갤] 울컥울컥 체르노빌
[167]
ㅇㅇ갤로그로 이동합니다. 02.14 16928 151
305560
썸네일
[도갤] 지난주에 찍은 서울 설경.webp
[25]
눈부신계절에갤로그로 이동합니다. 02.14 7491 39
305558
썸네일
[특갤] 과도기 ON
[110]
수직갤로그로 이동합니다. 02.14 16273 71
305554
썸네일
[싱갤] 냠냠쩝쩝 일본의 게장요리
[265]
ㅇㅇ갤로그로 이동합니다. 02.14 20395 138
305552
썸네일
[유갤] 김씨표류기 출연료 5만원 받은 배우
[176]
ㅇㅇ(146.70) 02.14 22718 34
305550
썸네일
[일갤] 와카야마현 여행기 ⑦키요히메 이야기의 배경지 도죠지(道成寺)
[12]
집에가기싫다갤로그로 이동합니다. 02.14 5041 12
305548
썸네일
[싱갤] 개고기 근황
[409]
ㅇㅇ갤로그로 이동합니다. 02.14 29684 243
305546
썸네일
[기갤] 마케팅 천재 듀오링고가 이용자들 공부시키는 방법.jpg
[118]
ㅇㅇ갤로그로 이동합니다. 02.14 18670 23
305543
썸네일
[세갤] 뮌헨에서 20시간동안 마시기
[71]
해히르갤로그로 이동합니다. 02.14 11281 27
305540
썸네일
[미갤] 일본인 아줌마들이 한국인에게 궁금했던 것.jpg
[349]
ㅇㅇ(37.120) 02.14 28138 112
305537
썸네일
[싱갤] 혐주의0 싱글벙글 일본의 신기한 식재료들
[167]
ㅇㅇ갤로그로 이동합니다. 02.14 21419 96
305534
썸네일
[배갤] 유럽 배낭여행기6 -폴란드 바르샤바
[33]
celev갤로그로 이동합니다. 02.14 7090 28
305531
썸네일
[기갤] 서부영화 속 보안관 현실판, 말 타고 마약범 추격해 검거.jpg
[72]
ㅇㅇ갤로그로 이동합니다. 02.14 9856 70
305525
썸네일
[잡갤] 조선시대 수사기법으로 살인사건 파헤치기
[100]
관심종자갤로그로 이동합니다. 02.14 12905 42
305522
썸네일
[봇갤] 새해 에노시마 해돋이 + 쇼난 여행기 3 (스압)
[18]
Selanik갤로그로 이동합니다. 02.14 6455 15
305519
썸네일
[배갤] 김연경, 직접 은퇴 이유 밝혔다
[235]
배갤러(223.33) 02.14 19732 15
305516
썸네일
[싱갤] 어느 누나의 남동생 괴롭힌 썰
[436]
ㅇㅇ(115.126) 02.14 35981 318
305513
썸네일
[이갤] 목동 깨비시장 돌진 70대 운전자 검찰 송치…치매로 요양병원 입소
[190]
슈붕이(223.38) 02.14 11981 35
305511
썸네일
[해갤] 전두환 사진으로 광주FC 도발한 中관중들… 국내 팬들 '분노'
[603]
해갤러(223.38) 02.14 17760 227
305509
썸네일
[싱갤] 요즘 핫하다는 테슬라 사이버트럭 근황촌
[179]
ㅇㅇ갤로그로 이동합니다. 02.14 26096 131
305508
썸네일
[일갤] 일본 도쿄 동네별 특징 3줄 정리.JPG
[249]
ㅇㅇ갤로그로 이동합니다. 02.14 22087 179
305506
썸네일
[잡갤] 이재명 "북미대화 재개 지지"
[423]
묘냥이갤로그로 이동합니다. 02.14 13801 53
305505
썸네일
[주갤] (블라) 3주뒤 결혼할 전문직남자찾는 블줌마
[213]
블라탐험가페페갤로그로 이동합니다. 02.14 26043 303
305501
썸네일
[카연] 행복하게 살고싶은 원룸 고양이 소녀
[39]
밀강이만든박하스갤로그로 이동합니다. 02.14 11005 28
305499
썸네일
[해갤] 기안84 보육원 인당 100만원 기부
[278]
해갤러(223.38) 02.14 15823 114
305497
썸네일
[싱갤] CNN 선정 세계에서 가장 맛있는 음식
[229]
노리유키갤로그로 이동합니다. 02.14 28307 72
305495
썸네일
[유갤] 지난주 금 - 토 선자령 후기
[57]
엄살맨갤로그로 이동합니다. 02.14 7465 29
305493
썸네일
[기갤] "번화가 한가운데 불길 일어", 매년 170대 추락하는 나라.jpg
[38]
ㅇㅇ갤로그로 이동합니다. 02.14 11194 17
305491
썸네일
[특갤] 메타에서 사람 사진 한장으로 여러 각도를 구현하는 연구를 내놓았는데..
[81]
브이로그갤로그로 이동합니다. 02.14 15024 105
뉴스 '살림남' 박서진, 삼천포 중심부에 새 집 마련한 이유…"부모님 맞춤형, 문 열면 바로 병원" 디시트렌드 02.14
갤러리 내부 검색
제목+내용게시물 정렬 옵션

오른쪽 컨텐츠 영역

실시간 베스트

1/8

뉴스

디시미디어

디시이슈

1/2